4 research outputs found

    Studying the Applicability of Generative Adversarial Networks on HEp-2 Cell Image Augmentation

    Get PDF
    The Anti-Nuclear Antibodies (ANAs) testing is the primary serological diagnosis screening test for autoimmune diseases. ANAs testing is conducted mainly by the Indirect Immunofluorescence (IIF) on Human Epithelial cell-substrate (HEp-2) protocol. However, due to its high variability, human-subjectivity, and low throughput, there is an insistent need to develop an efficient Computer-Aided Diagnosis system (CADs) to automate this protocol. Many recently proposed Convolutional Neural Networks (CNNs) demonstrated promising results in HEp-2 cell image classification, which is the main task of the HE-p2 IIF protocol. However, the lack of large labeled datasets is still the main challenge in this field. This work provides a detailed study of the applicability of using generative adversarial networks (GANs) algorithms as an augmentation method. Different types of GANs were employed to synthesize HEp-2 cell images to address the data scarcity problem. For systematic comparison, empirical quantitative metrics were implemented to evaluate different GAN models' performance of learning the real data representations. The results of this work showed that though the high visual similarity with the real images, GANs' capacity to generate diverse data is still limited. This deficiency in the generated data diversity is found to be of a crucial impact when used as a standalone method for augmentation. However, combining limited-size GANs-generated data with classic augmentation improves the classification accuracy across different variants of CNNs. Our results demonstrated a competitive performance for the overall classification accuracy and the mean class accuracy of the HEp-2 cell image classification task

    Deep Active Learning for Automatic Mitotic Cell Detection on HEp-2 Specimen Medical Images

    Get PDF
    Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence
    corecore